通过应用声纹识别、脸部识别、指纹识别等技术进行开锁等。通过大数据技术可以使智能家电,实现对自身状态及环境的自我感知,具有故障诊断能力。通过收集产品运行数据,发现产品异常,主动提供服务,降低故障率。还可以通过大数据分析、远程监控和诊断,快速发现问题、解决问题及提高效率。 3. 智能金融人工智能的飞速发展,将对身处服务价值链高端的金融业带来深刻影响,人工智能逐步成为决定金融业沟通客户、发现客户金融需求的重要因素。 人工智能技术在金融业中可以用于服务客户,支持授信、各类金融交易和金融分析中的决策, 并用于风险防控和监督,将大幅改变金融现有格局,金融服务将会更加地个性化与智能化。 智能金融对于金融机构的业务部门来说,可以帮助获客,精准服务客户,提高效率; 对于金融机构的风控部门来说,可以提高风险控制,增加安全性; 对于用户来说,可以实现资产优化配置,体验到金融机构更加完美地服务。 人工智能在金融领域的应用主要包括:智能获客、依托大数据、对金融用户进行画像, 通过需求响应模型,极大地提升获客效率。身份识别,以人工智能为内核,通过 人脸识别、声纹识别、指静脉识别等生物识别手段,再加上各类票据、身份证、 银行卡等证件票据的 OCR 识别等技术手段,对用户身份进行验证,大幅降低核 验成本,有助于提高安全性。 大数据风控,通过大数据、算力、算法的结合,搭建反欺诈、信用风险等模型,多维度控制金融机构的信用风险和操作风险,同时避免资产损失。 智能投顾,基于大数据和算法能力,对用户与资产信息进行标签化,精准匹配用户与资产。 智能客服,基于自然语言处理能力和语音识别能力, 拓展客服领域的深度和广度,大幅降低服务成本,提升服务体验。 金融云,依托云计算能力的金融科技,为金融机构提供更安全高效的全套金融解决方案。 4. 智能交通智能交通系统(Intelligent Traffic System,ITS)是通信、信息和控制技术在交通系统中集成应用的产物。ITS 借助现代科技手段和设备,将各核心交通元素联通,实现信息互通与共享以及各交通元素的彼此协调、优化配置和高效使用形成人、车和交通的一个高效协同环境,建立安全、高效、便捷和低碳的交通。 例如:通过交通信息采集系统采集道路中的车辆流量、行车速度等信息,信息分析处理系统处理后形成实时路况,决策系统据此调整道路红绿灯时长,调整可变车道或潮汐车道的通行方向等,通过信息发布系统将路况推送到导航软件和广播中,让人们合理规划行驶路线。 通过不停车收费系统(ETC),实现对通过 ETC 入口站的车辆身份及信息自动采集、处理、收费和放行,有效提高通行能力、简化收 费管理、降低环境污染。 ITS 应用最广泛的地区是日本,其次是美国、欧洲等地区。中国的智能交通系统近几年也发展迅速,在北京、上海、广州、杭州等大城市已经建设了先进的智能交通系统。 其中,北京建立了道路交通控制、公共交通指挥与调度、高速公路管理和紧急事件管理等四大 ITS 系统。广州建立了交通信息共用主平台、物流 信息平台和静态交通管理系统等三大 ITS 系统。 5. 智能安防智能安防技术是一种利用人工智能对视频、图像进行存储和分析,从中识别安全隐患并对其进行处理的技术。智能安防与传统安防的最大区别在于智能化, 传统安防对人的依赖性比较强,非常耗费人力,而智能安防能够通过机器实现智能判断,从而尽可能实现实时地安全防范和处理。 当前,高清视频、智能分析等技术的发展,使得安防从传统的被动防御向主动判断和预警发展,行业也从单一的安全领域向多行业应用发展,进而提升生产 效率并提高生活智能化程度,为更多的行业和人群提供可视化及智能化方案。 用户面对海量的视频数据,已无法简单利用人海战术进行检索和分析,需要采用人工智能技术作专家系统或辅助手段,实时分析视频内容,探测异常信息,进行风 险预测。 从技术方面来讲,目前国内智能安防分析技术主要集中在两大类: 一类是采用画面分割前景提取等方法,对视频画面中的目标进行提取检测,通过不同的规则来区分不同的事件,从而实现不同的判断并产生相应的报警联动等。例如:区域入侵分析、打架检测、人员聚集分析、交通事件检测等。 (责任编辑:职场达人) |