另一类是利用模式识别技术,对画面中特定的物体进行建模,并通过大量样本进行训练,从而达到对视频画面中的特定物体进行识别,如车辆检测、人脸检测、人头检测(人流统 计)等应用。 智能安防目前涵盖众多的领域,如街道社区、道路、楼宇建筑、机动车辆的 监控,移动物体监测等。今后智能安防还要解决海量视频数据分析、存储控制及传输问题,将智能视频分析技术、云计算及云存储技术结合起来,构建智慧城市下的安防体系。 6. 智能医疗人工智能的快速发展,为医疗健康领域向更高的智能化方向发展,提供了非常 有利的技术条件。近几年,智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用。 在辅助诊疗方面,通过人工智能技术可以有效提高医护人员工作效率,提升 一线全科医生的诊断治疗水平。如利用智能语音技术可以实现电子病历的智能语 音录入;利用智能影像识别技术,可以实现医学图像自动读片;利用智能技术和 大数据平台,构建辅助诊疗系统。 在疾病预测方面,人工智能借助大数据技术可以进行疫情监测,及时有效地预测并防止疫情的进一步扩散和发展。 以流感为例:很多国家都有规定,当医生发现新型流感病例时需告知疾病控制与预防中心。但由于人们可能患病不及时就医,同时信息传达回疾控中心也需要时间。因此,通告新流感病例时往往会有一 定的延迟,人工智能通过疫情监测能够有效缩短响应时间。 在医疗影像辅助诊断方面,影像判读系统的发展是人工智能技术的产物。早期的影像判读系统主要靠人手工编写判定规则,存在耗时长、临床应用难度大等问题,从而未能得到广泛推广。 影像组学是通过医学影像对特征进行提取和分析,为患者预前和预后的诊断和治疗提供评估方法和精准诊疗决策。这在很大程度上简化了人工智能技术的应用流程,节约了人力成本。 7. 智能物流传统物流企业在利用条形码、射频识别技术、传感器、全球定位系统等方面 优化改善运输、仓储、配送装卸等物流业基本活动。同时也在尝试使用智能搜索、 推理规划、计算机视觉以及智能机器人等技术,实现货物运输过程的自动化运作 和高效率优化管理,提高物流效率。 例如:在仓储环节,利用大数据智能通过分 析大量历史库存数据,建立相关预测模型,实现物流库存商品的动态调整。大数据智能也可以支撑商品配送规划,进而实现物流供给与需求匹配、物流资源优化与配置等。 在货物搬运环节,加载计算机视觉、动态路径规划等技术的智能搬运机器人(如搬运机器人、货架穿梭车、分拣机器人等)得到广泛应用,大大减少了订单出库时间,使物流仓库的存储密度、搬运的速度、拣选的精度均有大幅度提升。 人工智能产业发展趋势从人工智能产业进程来看,技术突破是推动产业升级的核心驱动力。数据资源、运算能力、核心算法共同发展,掀起人工智能第三次新浪潮。人 工智能产业正处于从感知智能向认知智能的进阶阶段,前者涉及的智能语音、计算机视觉及自然语言处理等技术,已具有大规模应用基础。但后者要求的“机器要像人一样 去思考及主动行动”仍尚待突破,诸如:无人驾驶、全自动智能机器人等仍处于开发中,与大规模应用仍有一定距离。 1. 智能服务呈现线下和线上的无缝结合分布式计算平台的广泛部署和应用,增大了线上服务的应用范围。同时人工智能技术的发展和产品不断涌现,如智能家居、智能机器人、自动驾驶汽车等, 为智能服务带来新的渠道或新的传播模式,使得线上服务与线下服务的融合进程 加快,促进多产业升级。 2. 智能化应用场景从单一向多元发展目前人工智能的应用领域还多处于专用阶段,如人脸识别、视频监控、语音识别等都主要用于完成具体任务,覆盖范围有限,产业化程度有待提高。随着智能家居、智慧物流等产品的推出,人工智能的应用终将进入面向复杂场景,处理复杂问题,提高社会生产效率和生活质量的新阶段。 3. 人工智能和实体经济深度融合进程将进一步加快党的十九大报告提出:“推动互联网、大数据、人工智能和实体经济深度融合”。 一方面,随着制造强国建设的加快,将促进人工智能等新一代信息技术产品发展和应用,助推传统产业转型升级,推动战略性新兴产业实现整体性突破。 (责任编辑:职场达人) |